MITRE-Bedford DivisionM-

MTR-3999 60T 3z <¢1 18

istory of Protection in Computer Systems

ADALO8S830

John D. Tangney

15 JULY 1980

Hﬁ

pric_{0C
SDEC 231‘.’4813 E '

A proved for public nlimite

_TRE

MITRE Technical Report

MTR-3999

History of Protection in Computer Systems

CONTRACT SPONSOR
CONTRACT NO
PROJECT NO

DEPT,

John D. Tangney

15 JULY 1980

0OSD (C31)
AF19628-80-C-0001
8420

D75

The views and conclusions contained in this pap=:- are those
of the authors and should not be interpreted as necessarily
representing the otfficial policies, either expressed or implied
of tha Department cf Defense or the United States Government.

THE

MI'TRI

[C 0 H e O RA T O N
BEDFORD, MASSACHUSETTS

P —— e a1 e

Acoossion For QT
N1Ts craxrl S
DTIC TAB M
Unannounced {1
Justification. . _ _ _ _|
By . - ——]

i Distribution/

Availability Codes
T lAvall and/or

Dist Spucial

-

Al

DTIC

\ ELECTE
DEC 23 1981,

D

Approved for public release; distribution untimited.

-

-~

Department Approval: /&1/7) > .
)
MITRE Project Approval: __ {/ﬁ)/l /@JK

ABSTRACT

This report documents a lecture delivered at the NSA Computer
Security Workshop on 19 March 1980. The subject of the lecture was
the evolution of information protection features in commercially
avallable general purpose computing systems. The lecture covered
features built into both computer hardware and operating systems in
an attempt to prevent programs of one user from stealing, modifying,
or destioying programs of other users and of the operating system.

This report is more than just a script for the lecture. 1In
explaining certain features, it goes into much grea’er detail than
is covered during the actual lecture, especially when presenting

those hardware features considered essential to the development of
trusted operating systems.

This report should be useful to readers interested in the
multilevel computer security problem. An appendix is included
which provides contextual information about the multilevel security
problem and the need for trusted operating systems.

114

ACKNOWLEDGEMENTS

This lecture has evolved from one developed by Ed Burke, enti-
tled "Computer Security Technology Introduction, History, and Back-
ground", given originally at the MITRE Computer Security Workshop in
January 1979, and which was revised and redelivered by Ed with the
title "Protection in Operating Systems: A Technical History," at the
NBS Seminar on DOD Computer Security Initiative Program in July
1979.

Comments and suggestions by Pete Tasker were very helpful in
bringing this lecture to its present form,

iv

- e S e e -
G wedeE g SR T el Lo s
t e v age pita

e ————— e ————— <

e i =

History
Of
Protection
In
Computing
Systems

of one uger from stealing,
data of sther users and of

R o T ol

A o s e

S L

Qutline

Compuier yenerations
OPeratingeg susteny support
Protecnon eatares

Residiead problonms

- J

In order to structure this presentation, we will consider the
evolution of information protection features starting from the first
generation of computer systems and continuing right up to state-of-
the-art or current generation computer systems.

Our purpose in doing so is to examine the principles underlying
the provision of effective information access controls within a com-
puter system. We shrll see when people first became concerned about
the protection of information and the provision of internal access
controls, and we shall look at some of the hardware and software
mechanisms developed to address the protection problem.

We shall see that the protection of information was not really
a problem during the first and second generations because they were
single-user-at-a-~time systems. Protection became a cause for con-
cern with the third computer generation when systems were designed

to share processor and storage resources among several concurrent
user programs.

As we move through each generation, we shall first exsmine the
nature of the operating systems typical of that generation., We will
look at the types of services provided to the programmer by the
operating system and consider briefly its underlying structure,

Then we will discuss the types of protection features designed
into typical systems of that generation by both the hardware and
operating system designers. We shall emphasize hardware features

2

S e e sememmen e s

o L, B B Skl

. e e e s e ¢

-

because a sound hardware base 1s essential to the implementation of
effective and efficient information access controls. We shall see
that hardware is not the problem, that the types of hardware features
we consider important are piesently available with most contemporary
computer systems. (As you will discover during the remainder of

the leccures, the problem is really oue of designing and implementiag
reliable operating systems software.)

After discussing typical protection features of each generation,
we will see how requirements for the processing of classified
information were satisfied.

Finally, we will note how protection problems not solved by a
particular generation influenced the nature of hardware and software
protection features built into systems of the succeeding generation.

b et Wt M A P L Y g ten

[

.

I-..—.-

First Generation Computers

From mid - 40's to CIRCA 1960

Hardware and simple bootstrap sottware

: USER SOFT WARE
' BOOTSTRAP SOFTWARE
HARDWARE
LO -
DEVICES CPU MEMORY
- y

The first computer generation began with the invention of the
electronic digital computer just after the second worid war and
lasted until around 1960, The technolsgy of these machines was
relays and vacuum tubes. The ENIAC, EDVAC, and UNIVAC I were early
members of the first generation. The IBM 704 (scientific) and IBM
705 (commercial) introduced core memories, with capacities on the
order of 16 and 32 K words. The /O devices were card reader /punch,
printers, and magnetic tape for secondary storage, ;

First generation computers uad no operating systems 28 we now
know them. They were essentially single user svstems -~ no
resources were shared. The programmer programmed in symbolic assem-
bly language or FORTRAN, using simple bootsirap software to load the
assembler or compiler into the machine to assemble or compile his
program, later using the same bootstrap to load his machine code for
execution. The programmer was also the compiter operator.

P .

. e lp———————

——

First Generation Protection

it sharing ol resourdes
U wet could destron hootstrap soliware

N protection leatures

First generation systems were not resource sharing systems.
They were used by only one programmer at a time, who had access to
the entire system, all its resources, until finished or until his
allotted time had expired, whereupon a new programmer had the sys-
tem., Under this environment the only protection problem was that of
trying not to destroy the bootstrap software. But this happened
quite often as programs were being debugged (and even after as they
were used on a regular tasis); it was a well accepted fact of life,
The programmer would just have to reload the bootstrap, usually by
first manually entering (through console switches) a very simple
boocstrap loader which would subsequently be used to load a more
us2ful punched card or magnetic tape loader,

There were, however, no protection features designed into
either the hardware or the bootstrap software,

S e Rt vk

First Generation Security

User had access to all physical resources
System protected at highest level

Most computation done at single jevel

_ Y,

First generation computers were primarily used for number
crunching. If there were requirements for classified computations,
the system would te operated in the system high mode, The system

was located in a facility secured to the appropri.te level and all
programmers were cleared to that level.

There was no provision at that time for a periods processing
mode of operation; most computations were done at the single, system
high level, If there was a need for unclassified processing -- the
bowling scores, for example -- thesa were treated as classified and
the output -- the scores -- had tuv undergo a downgrading procedure

before they could be removcd from the facility and posted in a hall-
way in an uncleared area.

Second Generation Systems

CIRCA 1960 to mul - 6ls's

Munitor software

USER SOFTWARE

MONITOR SOFTWARE

HARDWARE
1.0 1
I‘ cru J MEMORY |

The second generation started shortly before 1960 and lasted
only about until 1964, with IBM's intorduction of System/360. It
was a transitional period in many respects.

Computers of Lhis generation were constructed out of discrete
solid state components -- transistors and resistors —- and were
smaller, faster, cheaper, and more reliable than their vacuum tube
predecessors. Representatives of this generation were the IBM 7000
series -- characterized by the 7090 (scientific) and 7070 (commer-
cial) -~ the IBM]400 series -- with the 1401 (commercial) most
prominent -~ and the Burroughs B5000 series.

Main memories were still magnetic core based, but were double
the capacity of first generation main memories, and memory access
speeds improved almost by an order of magnitude.

Punched cards and magnetic tapes were still the primary peri-
pheral storage media, however, random access magnetic disks and mag-
netic drums were first introduced on some second generation systems.
These disks and drums were controlled by an independent I/0 channel
-~ a small processing unit -- operating in parallel with the central
processor. It wasn't unti! the third generation, though, when the
performe .ce advantages inherent in simultaneous operation of the
central processor and I/0 procasgors were fully exploited.

The second generation saw the advent of operdting system
software in the form of a collection of system routines commonly

7

o DRSS SETE e e+ e —

e i B

P

P o o T

called a monitor. The moniior was a set of useful machine services
which enhanced and extended the machine architecture and provided a
more useful and productive programming interface. A significant
second generation development was the distinction between systems
programmers, who wrote and maintained monitor routines, and applica-
tion programmers, who developed application systems using the moni-

tor. These application systems also utilized monitor facilities at
run time.

Typical cf second generation operating systems was the Fortran
Monitor System of the IBM 7090, which provided the programmer with

facilities for the compilation, debugging, and execution of Fortran
programs.

T et P

L s N Sl ey R T A L e A AL
oy e TN . ¥ Y S TR, T
G A s e .

FI—

T

Second Generation Systems

Notion of "'logical’ 1O devices
Memory space overlayed
Library functions

User at a time

The beginnings of time sharing/information processing

- _J

Some of the more notable services provided by these monitors

were logical 1,/0 devices, memory overlaying, and libraries of com-
monly used routines,

The notion of logical I/0 devices was an important development.
The user no longer had to worry about dealing directly with physical
devices. The monitor provided a number of logical devices and
nperations for the manipulation of them. The monitor performed the

mapping of logical device accesses to physical device accesses trans-

parently to the user.

Another feature of these monitors was support for overlaying of
main memory. Memory capacity was on the order of 64K words, some of
which was reserved for the monitor. User applications were expand-
ing and pressing the available memory capacity, so the idea of over-
laying was conceived whereby the user program was partitioned into
pieces, one piece resident and executing in main memory, the other
pieces residing on auxiliary storage. When the first piece finished
executing, the monitor would fetch the second piece into main
memory, overlaying it on the first piece, and execute it.

The concept of library functions was developed. Examples were
mostly useful mathematical routines -- trigonometric function,
square root -- which could be referenced in a FORTRAN program; the
link editor/loader routines of the monitor would retrieve these rou-

tines from the library. Various magnetic tape utilities, such as
sort/merge, were also provided.

S TR eae

.
peiCE—

Second generation systems were single-user-at-a-time batch pro-
cessing systems. Programmers would submit their batch jobs to an
operator who would feed them into the system. However, only one
user program would reside in main memory at a time and it would exe-

cute until completion. The operator would mount any tapes nceded by
the user's program.

In the second generation, though, systems programmers were
already making some interesting observations about processor utili-
zation, Although this was generally not a problem with CPU-bound
scientific programming, it was observed that commercial applications
tended to spend much of the time performing I/0 operations. Some of

this commercial processing tended toc be information processing
rather than computation,

Also, in the early 60's researchers on Project MAC at MIT began
examining the idea of multi-access, interactive processing. Already
researchers were recognizing the relative inefficiency of single-
user-at-a~time batch processing systems and were searching for

alternative modes of processing. The MIT group developed the Compat-

ible Time Sharing Syscem (CTSS), supporting three interactive users
and running the Fortran Monitor System in the background, on an IBM
7090 modified to support multiprogramming, a technique we will see
universally employed on third generation systems,

10

T e ! A e e R

Second Generation Protection

Single user program

Hardware mechanism 10 protect resident monitor soltware
from user program

MAIN MEMORY

USER
PROGRAM

HBATCH RESIDENT
SIREAM MONITOR

_ Y,

Second generation systems were atill one user at a time. At
most only one user program resided in main memory st a time and it
executed until completion. The only protection problem was that of
protecting the resident monitor programs from the resident user pro-
gram. The special hardware feature was merely a fixed protected
area at the bottom end of main memory which contained the monitor.
Let us say that the monitor resided in main memory starting at loca-
tion 40000. Now, whenever the processor fetched an instruction from
a location greater than 40000, 1t knew that monitor software was
executing and it would ailow any location in main memory to be read
or written by that instruction. However, whenever the processor
fetched an instruction from a location less than 40000, it knew that
a user program was executing and would allow only locations less
than 40000 to be read, written, or branched to by that instruction.
The one exception was that the user program could branch to location
40000 only. This was the mechanism by which the user program could
“trap" to the monitor and request some particular service.

Sume systems permitted only the monitor to execute I/0 instruc-
tions; that is, the processor would perform an I/0 instruction only
if it had been fetched from location 40000 or grea.:r. This forced
the user to trap to the monitor for I/0 and was the hardware protec~
tion mechanism by which the monitor could protect the library pro-

grams (stored on system tape or disk) from accidental or malicious
destruction.

11

-

s

s

We shall see this notion of a “two state" processor -- a
privileged state and unprivileged state -- extended somewhat in the

third generation to address protection problems in multiprogramming
computing system.

12

i s e T

RS PR SEEEE

Second Generation Security

User had access to most resources
System, users at highest level

Some manual tevlew for lower ciassified runs

N

_/

| ranm

With respect to the processing of classified information, there
was very little difference from that of the first generation. Sys-
tem high was the prevalent mode of operation. The output of any

lower classified jobs had to be reviewed and downgraded to its true
level of classification.

13

et b i TS s

. —— e ST

e c———— At e = =T

.

Third Generati \
eneration Systems Third Generation Systems
=
. USER [USER | USER | USER] USER |+ » «| USER
General purpose computing systems
Common architec ture over severael models Oggﬂzwc
Integration of autonomous 1 O processors
Main (oncern of operating svstem: maximum resource HARDWARE
utitization
Mot troatanmimgrg _&
FILE \: 10 cPU MAIN
SYSTEM |—] PROCESSOR MEMORY
T
10
DEVICES
\ J\ v,

J

The third generation is widely regarded as having begun in 1964
with IBM's introduction of System/360. Honeywell's 600 series is
also characteristic of the third generetion. The technology of the
third generation was solid state circuitry, offering improvements in
speed, capacity, and reliability, and permitting even smaller pack-

aging. Memories, still of core memory technology, began to reach
capacities of 128K words and larger.

The major third generation systems were designed to be general
purpese computing systems. The manufacturers decided to move away
from the notion of one machine model for scientific pro.essing and
another for commercial processing. Instead they wanted an architec-
ture which would support both numerical computation and information

processing. Suvpport for data management services was recognized as
a very desirable and useful feature.

Another distinguishing characteristic of third generation sys-
tems was that they provided a common architecture over various
models ranging in performance and capacity. Models at the lower end
of the range presented the same architecture as did models at the
upper end. The different models were instruction set compatible.

The third generation saw full employment of independent I1/0
processors (or channels) operating in paralle! with the central pro-
cessor. A significant factor influencing the third generation was
the rapidly escalating demand for computer usage. As the basic
technology improved, computers were becoming cheaper and a computer

14

R Rt T
PRV 3

Nha LR LR PRSI S SN

was becoming essential to more and more businesses and government
agencies. Even 8o, a computer represented a significant investment
anu it was important that it be utilized as much as possible. For-

tunstely more and more applications were being identified as candi-
dates for computerization.

Toe primary concern of the third generation operating system
was maximizing utilication of the computer's various resources. The

gcal was to keep the central processor and I/0 processor as busy as
possible. The technique employed by third generation operating sys-

tems to achieve maximum resource uvilization was known as multigro—
Erammins.

15

N

~r

Multiprogramming
MA'N MEMORY
Muliiple user programs concurrenth,
resident in main memaorn PROGRAM A
Program A exec utes on progessor
umtil it requests | O
PROGRAM B
Operating sustem suspends Program A USER
but staris | O operation on | O channel AREA
Operating system starts another UNUSED
UNET Program on protessor 1
PROGRAM C
OPERATING
SYSTEM

_/

The idea behind multiprogramming is that the operating system
keeps more than one user program resident in main memory at a time.
One user program runs on the central processcr until it terminates,
exhausts its allotment of central processor time, or requires I/0,
whereupon it makes an I/0 request to the operating system. The
operating system suspends that user ,-ogram from running, initiates
the I/0 request on one of the I/0 processors, and gives the central
processor to one of the other resident user programs (which runs
until it terminates, needs I/0, or runs out of time).

Multiprogramming is the technique by which the operating system
shares the resources of the computing system among several resident
user programs, It is this concurrent sharing of resources that dis-
tinguishes the third generation from earlier generations and intro-
duces a number of new protection problems.

16

GEaTT L T e et

s o A

r—— e ——

o

Third Generation Services

Resource sllocation
CPU scheduling

1 O device schedhling
Memoty space

File system

Vinuahzaton of fke resources

Program Library
Langquages
Subrowine pa hages

The operating system became a major component of the third gen-
eration computing system. It carried the significant responsibility

of seeing to it that the resources of the system were maximally
utilized.

Most third genesration computer systems were batcn systems,
receiving a stream of user jobs and processing several of these at a
time., Severali user programs are resident in main storage at a time,
The task of the operating system is to multiplex the system's main
rescurces -~ central processor, main mer.ory, and I/0 channels -
among the resident jobs in the most efficient manner.

Durirg th¢ th:ird generction, the advantages of on-line storage
for programs and data f1l:s -- much more efficient than off-line
cards or magnetic tape -- were well recognized. Therefore some cen-
tralized me:ns of organizing and storing user information, ana
managing thc retreival of this information, was delegated to the
operating system, This mechanism is known as a file system.

A wider variety of programming languages were supported by
these gene-al purpose systems, Compilers for Fortran and Cobol were
available; IBM tried to be all things to all men with PL/I, The
notion of on-line libraries containing often used routires and use-
ful utility programs, introduced during the second generation, was
greatly expanded during the thiid generation.

17

T e et S ol A ol

e e —— ———— e et

% e

e um &

Lo amn s b e tmmeAeAEERE . eiadeade = A o

Third Generation Protection

Methaniams needed 10 suppori user multiprogramming safely

User prograni v uset program
User pnogram s operaing system

Uset progqram v system sesounees

& J

As already noted, the introduction of multiprogramming
presented both the hardware and operating system designers with some
serious protection problems. Mechanisms were needed to support mul-
tiprogramming safely. W.th several user programs concurrently
resident in main memory, mechanisms were needed to protect one user
program from interference by another, and to protect resident
operating system software from interference by user programs,.
Thirdly, mechanisms were needed to protect the various resources
managed by the operating system — the rile system, the program
libraries -- from interference by user programs.

The first two protection concerns are addressed by features
providing memory protection -- the ability to protect areas or par-
titions of main memory from unwarranted access by user programs,
The third protection concern is a matter of controlling a given

program's access tc certain central processor instructions and to
I1/0 devices.

18

S i . L e

R N U - A e

o e i o

Third Generation Protection

Memaory prutection
Lk mey

Roase ane cvnnas redsters
CPU and 1 O protection
Tair smaly fhia sen
v st tons

R R T P I AN TN

\— /

Let us examine some of the hardware features built into third

generation computing systems to provide memory, central processor,
and 1/0 device protection.

One of two mechanisms was employed to protect one r :sident user
program from destroying another resident user program, and to pro-
tect the operating system resident software from resident user pro-
grams: lock and key, or base and bounds registers. '

{See the next two view graphs entitled "MEMORY LOCKS AND PRO~
GRAM KEYS" and "BASE AND BOUNDS REGISTERS".)

The most significant mechanism was that of the two-state cen-
tral processor, meaning that the processor could operate in one of
two states: privile;=d or unprivileged. Certain of the processors
instructions are designated as privileged, meaning they can only be
executed when the processor is operating in privileged state., Exam-
ple of privileged instructions are those that perform 1/0, control

the interrupt mechanism, and set base and bounds registers or locks
and keys.

The two processor states create two domains of execution, which
have been callea supervisor and user domains. User programs execute
in user domain, with the processor in unprivileged mode, meaning
that any attempt to execute one of the privileged instructions is
trapped by the processor. Also, the lock and key, or base and
bounds, memory protection mechanism, wnichever is used, is enforced
on memory accesgses,

19

LT e A SAPRBIAIAG IO G B e =

The operatidg system executes in supervisor domain, with the
processor in privileged mode, able to execute the privileged
instructions. Typically any memory protection mechanisms are dis~
abled, meaning any memory location is accessible from supervizor
domain. Only the vperating system has uncontrolled access to all of

the system's resources; user programs have indirect aocess to system
resources,

20

N T
TR . LI
P g AL TSN
. . 1,.7&- AT e,
A "

W

j

Memory Locks and Program Keys
PROGRAM LOCKs AN MEMORY
STATUS WORD
PROGRAM A |1000
"0 o1)
m:n‘n Live) -
Y 1O PROGRAM B {1000
CURRENT ’
PROGRAM (H) 4000
I [1111]] | PROGRAM A
T
*NUSEDY,
/A(ALLlllll m
Lot J | eroGram ¢
o] 7000
E-E:] OPERALING [B000
SVTEM *000
10000

With the lock and key mechanism, each location in main memory
carries with it a lock -- for example, a 4-bir integer, which can be
set by the operating system -- and each resident user program is

assigned a key -- for example, another Y-bit integer.

When the

operating system assigns a user program an area in main memory, it
sets the locks of the locations in that area to contain the 4-bit
Now, whenever a program
accesses main memory, the processor checks to see that the program's
key matches the value stored in the lock associated with the area

pattern assigned as key to the program.

accessed,

21

e e ——————— o A T

~ ™)

Base and Bounds Registers

MAIN MEMORY
o v——

PROGRAM A

e S |
|
: PROGRAM B) '

Ty
/ UNUSED /
710077

PROGRAM C

OPERATING
SYSTEM

N y

With the base and bounds mechanism, the processor contains a
pair of registers called a base register and a bounds register, The
base register contains the starting location in main m::mory of the
currently executing user program; and the bounds register contains
the ending location of the user's program in main memory. On each
memory reference made by the currently executing user program, the
processor checks that the reference is within the area in main
memory defined by the base and bounds register. When a different
user program is given the processor, the base and bounds register
are changed, by the operating system, to describe the new program's
h memory area.

Program Status Word
R,
PRIVILEGE BIT: |
0 UNPRIVILEGED
1 - PRIVILEGED)
USER DOMAIN SUPERVISOR DOMAIN
USER PROGRAMS QPERATING SYSTEM
P-0 Pt ‘
UNPRIVILEGED PRIVILEGED INSTRUCTIONS
INSTRUCTIONS VO
oy ACCESS SET MEMORY PROTECTION
MAY BYPASS MEMORY ACrESS
\ CHECK ‘)

Third generation systems were multiprogramming systems: meaning
more than one user program was resident in main memory at a time and

the central processor was multiplexed among these resident user pro-
grams (and the operating system),

Therefore, the hardware protection mechanisms centered about

protecting one program from another (and protecting the system from
user programs).

The key hardware feature was the program status word (or PSW),
a hardware register within the central processor. It defined the
characteristics of the currently executing program. One bit in the
PSW indicated the particular state in which the processor was exe-

cuting -- privileged or unprivileged -- and thereby indicated the
domain in which the program was executing.

If the executing program was a user program, a field within the

PS4 held the (4-bit or so) key assigned to the program to govern its
legal memory area.

Another field within the PSW was the interrupt mask, Depending

upon the setting of this field, certain I/0 devices were prevented
from interrupting the central processor.

It is important to note that the PSW can only be loaded or
modified by software executing in supervisor domain. The machine
instructions to load or modify the PSW are privileged instructions.,

23

| g

R

By permitting only operating system software to run in supervisor
domain, the operating system can conirol the use of system
resources.

As noted, user software runs in user domain. Transfer into
supervisor domain, and privileged processor mode of execution, is
also hardware controlled. User programs invoke the operating system
by executing a trap (or supervisor call) instruction, which is
unprivileged. The effect of the trap instruction is to change the
mode of the processor to privileged and to commence execution at g
predefined memory location containing operating system code.

Transfer to the operating system occurs asynchronously by means
of an I/0 interrupt. When a device raises its interrupt flag, the
central processor recognizes this and automatically sets the proces-
sor mode ty privileged and initiates an interrupt handler at a
predefined location within the operating system region of main
memory.

24

.

o

%
D

e v

e

’
'

Third Generation
Protection Features

Software features

C hechs wegality, of supercisor calls

Puertorms L) processing

Prowacde s~ pr pa s e e prote teors dpaassworedsg

Anddit e s

_ D

Software mechanisms were included within the operating system

itself to augment the protection mechanisms provided by the
hardware.

Some systems attempted to verify the legality of supervisor
calls issued via the trap instruction from user domain. In particu-
lar, some attention was given to checking the validity of parameters
supplied with the system call. The operating system would check the
number of parameters supplied and assure that each paramerer was of
the proper type. For example, the operating system might wish to
check that a parameter defining the starting address of an 1/0
buffer was indeed within the memory area allocated to the program
making the request.

Users had little facility for performing I/O directly. Rather,
I/0 was provided as a service by the operating system. This was
good from a protection standpoint because the misuse of an I/O chan-
nel by a user program could destroy other resident user programs or
information stored on shared I/0 devices.

Most third generation systems employed passwords to control
access to files within the file system. The owner of a file would
assign a password to the file upon its creation. Anyone wishing to
access that file in a job step would have to submit its password on
one of the control «ards for the job step. The system would verify
correctness of the password before granting the user access. The

owner could thus share the file with fellow programmers by informing
them of the fila's whereabouts and its password.

25

Most systems incorporated an sudit log mechanism to maintain a
record of user operations snd system resource usage (informatior
essential to billing users for syst.= usage). Of importance tc
irformation protection were audit lug entries resulting from fiie
system usage. For example, the system would create an entry when-
ever a file was read or modified. The entry would indicate the user
accessing the file, the type of access, and time of access. File
access audit information was generally made available to the owner
of a file so that the owner could determine whether some unauthor-

ized user was using the file (by illegally obtaining or guessing its
password).

26

| em——

e e i e O
i

Third Generation Security

Lisers ard information ai differei:t levels
Concurrent multilevel use desirable
Requares olin B apeating systen access connol mechatnsms

Operating sustems were unreliable

Had 10 revert 1o (eaditional techniques
Systeont hghe aperanon

Pernsds prio essing

- J

There was an increasing demand for the services provided by
third generation computer systems. More and more applications were
being considered for implementation on a computer. Many of these
potential applications had requirements for the concurrent process-
ing of information at multiple classification levels, and some
required the servicing of users of differing levels of clearance.

As we have noted, in order to satisfy these multilevel require-
ments the operating systems must support effective access control
mechanisms to guarantee the separation of multilevel information.
The computer system must be able to thwart attempts by malicious

usera to gain access to information for which they do not possess
sufficient clearance.

It was evident, though, that third generation operating systems
were too unreliable and they could not be trusted to effectively

protect information. They were just not constructed with security
as a primary design goal.

So it was not possible to satisfy the demand for true mul-
tilevel processing. Instead system architects had to revert to the
traditional techniques of either system high operation, with its
disadvantage of proliferating classified information, or periods
processing, with its inefficient utilization of system resources.

27

et ol ! ettt W o

f R

Third Generation Problems

Hardware and software features were not effective
Nowell cancenced design and dey elopment strateqy

Kostadmag systems were jarge ond « omples

_ Y,

The hardware and software protection features of third genera-
tion operating systems were ineffective because of the unreliable
nature of the operating system software, There were both design and
implementation bugs in the software which could be exploited by the
knowledgeable, malicious user to subvert the protection features.
After all, it is the responsibility of the operating system to util-
ize the underlying hardware protection features correctly; if it is

possible to subvert the operating system it is possible to subvert
the hardware protection features.

The operating systems were so unreliable because they were not
developed through a well conceived design and implementation strat-
egy. The term '"design by committee" or "ad hoc design" were unfor-
tunately so characteristic of those systems. It is fair to say that
the primary objective of third generation operating system designers
and implementators was simply to get the system working, to keep the
resources utilized, and maximize throughput. The responsibilities
of the third generation operating system were an order of magnitude
greater than its second generation predecessor. The resulting
operating systems were very large in size, written mostly in assem-
bly language for efficiency, and consequently very complex. (I'm
sure you have all heard stories about the hundreds of people
involved in designing and building 0S/360, and its hundreds of
thousand of assembly language instructions, and its near constant
number of one thousand bugs throughout its many releases!)

28

© T pm— e -

. o W e e chmamn bk o T
RS S A

ST

et e d T T A e At

Third Generation Penetrations

0S/360: MITRE
GCOS: Government
0S.VS: SDC

\ Y,

As evidence of the protection weaknesses of third generation
operating systems, a number uf them have been successfully
penetrated and documentation of these penetrations is in the public
domain. Let us briefly diccuss three of them.

A couple of people at MITRE were able to penetrate 0S/360,
specifically the MVT {or Multiproyramming with Variable number of
rasks) operating swstem. A particular Air Force organization made
an attempt at achieving a multilevel mode of processing on 0S/360
MVT, They devised a security software package which they felt would
permit the processing of classified data while both cleared and
uncleared user programs were concurrently resideant in main memory.
The package would be used by people runniang classified jobs and what
it did was to destroy all 1/0 buffers and the program's area in main
memury upon termination of the classified job, so that subsequent
(probably uncleared) user programs could not "scavenge" any of the
classified information. The classified jobs were constrained to use
only tapes for their classified data to avoid having to rely on the
protection mechanisms of MVT's disk access software.

This approach sounds pretty good at first glance, but note that
it is an attempt to provide security through an "add-on" application
nackage . Because the MITRE penetrators were able to penetrate MVT
iteelf, upon which the package ran, they were able to circumvent the
package's security provisions.

29

The security package wxs located on the syatem disk and the
penetrators were able to replace the package with their own version,
which continued to destroy the buffers and working areas of claasi-
fied jobs, but before doing sc wrote a copy of the classified infor-
mation onto a disk file owned by the penetrators,

The penetrators were able to replace the security package
because they were able to "take over the system." While examining
the program listings of MVT, they noticed that the software mechan-
ism controlling the execution of MVT progrems in supervisor domain
were too dispersed; MVT did a lot of branching among routines in
supervisor domain and they found it relatively easy to fool MVT into
either a) returning to the user program after completion of a super-
visor call without resetting the processor mode to unprivileged, or
b) simply branching directly to user program while still in
privileged mode. The net effect in either case is to return to the
user program in privileged mode. The user program is now the
opersting system. T

The penetrators also found a significant I/0 design flaw. MVT
would store I/0 control blocks in the user program area, unprotected
from the user program. A knowledgeable user could write his program
to exploit this, modifying the control informatiou set up by MVT so
that the user could effectively read and write memory areas not
belonging to him. The user could read information velonging to
other users or, more ominously, write areas of memory reserved for
the operating system. The latter would permit the user to 'rewrite"
portions of the operating system, inserting so-called "trap doors"

into the operating system which could be exploited only by that
user.

The Defense Intelligence Agency (DIA) was able to penetrate the
GCOS operating system running on the Honeywell 635, As do most
penetration teams, the DIA group found not one but a number of
flaws; one relates to the checkpoint/restart feature of GCOS.

Checkpoint /restart is a useful program debugging tool. The
idea is that a user program executes until it encounters a check-
point, at which time GCOS is invoked to dump the user program region
onto a disk file. GCOS would dump both user data and control infor-
mation onto this file. GCOS would make this dump file available to
the user; the user could read and modify this dump file and then
request GCOS to restart the suspended program. GCOS would read in
the dump file and restart the program.

One of the pieces of control information stored on the dump
file is the program status word. Incredibly, the user could modify
the PSW, setting the processor mode to privileged, before restarting

30

c e afeem—

L m—————

the program,

The user could exploit this design flaw to take over
the system.

The 0S/VS operating system running on IBM 360 was penetrated by
a combined group from IBM and System Development Corporation. O0S/VS
evolved from MVT and unfortunately inherited many of its flaws.

One of the penetrations perpetrated by IBM/SDC exploited flaws
in the¢ handling of I/0 channel programs. O0S/VS permitted user pro-
grams to write their own channel programs. However, the user pro-
gram had to invoke 0S/VS in order to run the channel program and
0S/VS would endeavor to check the validity of the channnel program
before running it. 0S/VS would check to see that the user was only
doing I1/0 to areas of memory assigned to the user program. Unfor-
tunately, there were a number of schemes whereby the user could
write a self-modifying channel program, particularly when the chan-
nel program consisted of a number of channel commands chained
together. The channel program, once blessed by 0S/VS, resided in
the user's area of main memory. One of the early channel commands
would read in a new channel program -- unchecked by 0S/VS -- which
would overwrite later channel commands which had been checked by

08/VS. These new commands could read or write memory areas not
belonging to the user,

It is probably safe to say that there were few, if any, unsuc-
cessful penetration efforts of third generation systems when the
penetration team was knowledgeable and determined, It is also safe
to say that most penetration efforts found not one but several
exploitable flaws, both design and implemeatation flaws.

31

N ™

Current Generation Systems
Current Generation Systems v

~ Cd
/
Il\ ’:D
\ !
1

Interactive. muliiple access, timesharing USER | USER | USER | USER | USER]+ + | USER
Virtual memory arc hitectures OPERATING
. SYSTEM
¥ xamples .
MU TICS HARDWARE
TENEX
N FLE =3 vo VMAT MAIN
VAN VMS) SYSTEM |—] PROCESSOR MEMORY
[RARAR]
DE:I/I%ES

Let us now look at current generation computing systems. It is
probably reasonable to label these systems fourth generation sys-
tems, but I haven't seen that term used to refer to modern systems
so I prefer to call them current generation systems.

Perhaps the most distinguishing characteristic of the current
generation relates to mode of usage. Current generation systems are
interactive systems where many users access the system concuriently
using terminal devices. Insteal of submitting a deck of punched
cards containing a series of job steps, as was the pattern of use
during the third generation, current generation users sit at a ter-
minal and issue commands to the computer using the terminal's key-
board.

The technique employed by current generation operating systems -

to support multiple concurrent user access is called timesharing.
The operating system allocates the central processor to user pro-

grams for very short periods of time (e.g., 100 milliseconds), usu- -

ally in a simple round-robin fashion, in an attempt to distribute
processor time evenly among all users desiring service. Since each
user is guaranteed a slice of processor time, say, every three or
four seconds, the user is given the illusion of having the whole
machine to himself.

If the operating system is to timeshare efficiently the proces-
sor among multiple user programs, as many user programs as possible

should be concurrently resident in main memory. In the ideal case,

32

G g v N

o — -

all user programs would be memory resident and timesharing would be
a simple matter of suspending one user program -- after it exhausted
its allotted time-slice -~ and starting another. Unfortunately main
memories are just not large enough to accommodate, all at once, the
programs of all users desiring service, particularly if each user's

entire program must reside in main memory, as was the case on third
generation systems.

A distinguishing architectural feature of current generation
hardware is virtual memory. Virtual memory permits more flexible
operating system allocation of main memory to user programs, making
the operating system better equipped to support interactive access
by multiple users through Limeshariug. The important characteristic
about virtual memory architectures in this regard is that the
address space of a user program is partitioned into a set of
independently allocated units, some of which are main memory
resident when the user program is executing, and some of which are
not. Because only the more active (i.e, most recently executed)
units of a user program are resident, and not the entire program (as
was the case on third generation systems), the operating system can
fit a greater number of user programs in memory at once, and hence a

greater number of users can be serviced efficiently through
timesharing.

The characteristics of virtual memory are treated in greater
detail later.

Here are some examples of current generation systems. MULTICS
is a system developed jointly by MIT, Bell Laboratories, and
Honeywell. This group was one of the first to recognize the infor-
mation protection problems inherent in interactive, multiple access,
timesharing systems. The MULTICS operating system was first imple-
mented on a Honeywell 645. Later, it was reimplemented on a
Honeywell 6180. Many of the protection features specific to the
MULTICS philosophy of information sharing and protection were iwmple-

mented in software on the 645, but migrated into the hardware of the
6180.

TENEX i1s an operating system developed by Bolt, Beranek, and
Newman for the PDP-10 line of DEC computers. The first version of
TENEX was implemented on a third generation KA-10 processor enhanced
by BBN with a hardware device which provided a paged virtual memory.
TENEX has since been reimplemented on the KI-10 and KL-10 proces-

sors, both incorporating a paged virtual memory as a standard
feature.

VM 370 is a virtual machine operating system developed
by IBM for those IBM 370 models which include a

33

PR

paged virtual memory. W 370 provides a set of virtual machines,
each one looking like a cuunlete IBM 370 as described in the Princi-
ples of Operation of System/:70. CLaci .rtual machine runs its own
IBM 370 operatirg system and supports a set of ugers. VM 370 iso-

lates one virtual machine and its set of users from the other vir-
tual machines and their users.

VAX VMS is the operating system developed by DEC for its VAX-

11/780. The VAX machine is a segmented-paged virtual memory archi-
tecture.

34

Lo s mag e s Mty e -
P IO T s e

e o w e sl

o

.
. mt— ——

(
Current Generation W
Operating Systems

Tue influences

Head gencranon muliptoquamiimg model inappropriate oy
Pautth generahon

Operannyg sustem design emphasized

. J

Two major factors shaped the development of current generation
operating systems. First, operating system designers recognized
that the multiprogramming model employed during the third generation
was inappropriate for sgtisfying the response requirements of
interactive processing. The concept of the process was developed as
the computational entity to support the interactive user's process-
ing requirements. The operating system's provision of multiple con-

current processes to support multiple interactive users is known as
multiprocessing.

Secondly, the designers were well aware of the unreliability of
third generation operating systems. They knew how easy it was to
penetrate them and subvert whatever hardware and software protection
mechanisms existed. They realized that the crux of the problem was
the almost ad hoc manner in which third generation systems were
developed. So, they began to consider better strategies for design-
irg, implementing, and testing current generation operating systems.
They learned a lot about the inadequacies of third generation

software engineering and also about the flaws exploited to penetrate
third generation systems,

35

PR

e a

Third Generation Multiprogramming

MAIN MEMORY

User program 1o execute one

job ~tep PROGRAM A

t ntire program resides in main i
memory until «ompletion PROGRAM D
Program size is sialic PROGRAM C
PROGRAM B

BAICH OPERATING
STREAM SYSTEM

__ Y,

Let us consider further the multiprogramming model of the third
generation. As already noted, users submitted batch jobs on card
decks. Each user job consisted of a number of job steps; for exam-
ple, a typical job might consist of a compilation step, a link edit
step, and a load and execute step. The operating system would read
in a job and perform each job step sequentially. For the compila-
tion step, the operating system allocated an area in main memory in
which the compiler executed as a user program. This compilation
program resided in main memory and executed until completion. For
the linkage editing step, the operating system again allocated an
area in main memory (perhaps the same area) in which the linkage
editor ran as a user program until completion. Finally, the operat-
ing system performed the load and execution step by again allocating

a main memory area, loading in the link edited user program, and
executing it.

The important points about this model is that each job step ran
independently as a user program which resided entirely in main
memory and executed until completion, abnormal termination, or
exhaustion of its allocated processor time, and that the main memory

allocated to the user program was fixed in size during program exe-
cution.

36

N LT M TR e N R TR T e

Vg

PP I

e

Current Generation Multiprocessing D

<

p——
USER
FROCESS

A |

e .

t { |

.] I

i | !

| Vo i
b L |

———— FILESYSTEM

-G

|
er ~ R gy |
Cb“‘ TERMINAL PER - PROCESS MEMORY

Now, in the current generation, instead of having just one (or
a few) batch job stream(s), the cperating system must handle marny
job streams conzurreantly, one stream for each user logged on the
system. Analogous to the individual steps of a batch job, the user
issuec a series of commands to the operating system. Each command
is just like the job step of the previous generation. Now, however,
the user at his terminal must be serviced responsively by the sys~

tem. Acceptable '"turn-around" or response time is now measured in
seconds instead of minutes.

Hardware and software designers developed the notion »f the
process to service each user. The process is a computational
entity, an enviromment in which the individual programs requested by
the user are executed. The operating system supports these indivi-

dual processing environments, providing them as needed to users of
the system.

Current generation systems support a number of user processes
concurrently and are therefore called multiprocessing systems. The
multiprogramming model of the third generation has evolved into the
multiprocessing model of the current generation to better suppurt
interactive processing by multiple concurrent users. Current gen-
eration systems use virtual memory addressing techniques to squeeze

as many user processes as possible into main memory to achieve fast
response to user requests.

37

T e R e C i A a2 it o
et g

The process is a virtual processing environment. It consists
of a virtual address space of some fixed maximum size. On most
current generation systems, the virtual address spuce of a user's
process may contain many programs simultaneously. This is true of
systems sunch as MULTICS, TENEX, and UNIX. Included in the virtual
address space of each process is the operating system. (This
doesn't mean that there are many copies of the operating systems,
one for each process; rather, only one physical copy exists and is
shared by all of the processes; each process has its own virtual
copy of ti~ operating system.))

Since each process includes a virtual address space and an
operating system —-- which provides a file system, I/O devices, and
other services -- the process represents the user's virtual process-
ing environment or virtual computing system. We say that current

generation operating systems provide a per-process virtual environ-
ment .

The operating system should be capable, as a matter of course,
of isolating and protecting processes from each other, while permit-

ting the sharing of programs and information among processes which
desire to cooperate.

38

N

T

(" Current Generation Operating)
Systems Functional Division

USER
CJ L

USER DEVICES R J FIESYSTEM
PER - PROCESS MEMORY

: @ PROVIDE SERVICES
- — e 'C) — - e SUPPORT ABSTRACTIONS
o MANAGE RESOURCES

o 88 [E

\ CPU DEVICES y,

]
|
{
|
|
|
(%

——— —
———

]

PREp—

.

As has already been stated, the other major factor shaping
current generation operating systems is the emphasis on operating
system design. Designers realized that, if their operating systems

were to become more reliable, they had to adopt a better design
strategy.

One of the first things they came to realize is thsat an operat-
ing system is not a big monolith ~-- the operating system. Ra:her,

it was possible to distinguish the various functions performed by
the operating system.

This slide depicts a three-part functional division.

One thing that an operating system dces is provide services.
It makes available to users such things as compilers, text editors,
data base management services, loaders, debuggers, and mail ser-
vices. In the context of the current generation, the operating sys-
tem, at the ucer's request, moves the programs and data which con-

stitute a particular service into the user's prouess virtuasl
enviromment for execution.

Next, the operating system implements a number of abstractions.
The most significant is the process absiraction, which we have
explained above. The process itself is constructed out of a number
of other abstractions which include 1) user or logical 1/0 devices,
2) the per-process virtual memory, and 3) the file system.

39

ety ER Y L TR SN U, C e

| ae— -

— - ————

The operating system implements thesc various abstrsactions out
of the underlying physical resources of the computing system.
Processes are run, in some order, upon the central processor.

Rceferences to logical I/0 devices are mapped into references to phy-

sical 1/0 devices. The file system is constructed on (typically)
random access I/0 devices, such as magnetic disks. And the per-
process virtual memory is maepped, with the assistance of some vir-
tual address translation hardware, onto main memory and some fast,

random access backing store, such as magnetic drum or fixed-head
disk.

The operating system must incorporate various resource alloca-

tion and management strategies in order to support the abstraction-
resource mapping in an efficient manner.

40

o

. i e b =

(" Current Generation Operating N
Systems Internal Structure
USER PROCESSES
OTHER EXTENDED FEATURES OF QS ‘
QP!:ZRATING
proCEss | memory [e | 290" vt SYSTEM
ABSTR { ABsTR | ABSTR | (e | ABSTR |
PROCESSOR MEMORY DFVICE
é,o MGT MGT MOT '

HARDWARE

\- _J

Some designers translated the functional division into an
internal structuring, or layering of the operating system. It was
during this period that the idea of structuring the internal design
into a hierarchy of modules or layers was first conceived. Modules
at the lowest layers of the hierarchy are concerned with the alloca-
tion and management of the physical resources. This slide shows
three modules in the bottom layer: processor management, memory
management, and I/0 device management.

The next layer in the hierarchy consists of modules which con-
struct abstractions out of resources and export these abstractions
to users of the system. The slide depicts four abstraction modules:
process, memory, file, and device. There is an additional module at
this level, the access control module. Ideally, such a module would
exist at this level and serve as the sole mechanism in charge of
system-wide access control. All references by user processes to
memory, file, and 1/0 device abstractions would be monitored by this

module, which would determine whether a given reference is to be
allowed.

These two layers together have been called the kernel of the
operating system. The kernel is the critical core of the operating
system and is that part which should be emphasized in order to
achieve reliable information protection.

The highest layer of the operating system consists of modules
which provide the extended features of the operating system. Some

41

e

PR

of these features are constructed out of the basic abstractions of
the operating system; these include mail facilities, record manage-
ment or data management facilities, network access facilities, line
printer spoolers, and command language interpreters.

42

e e et e

4

T

Current Generation
Protection Problems

U ser process vs user process
L'ser process va. operating system

Uiser process vy sustem resourd es

_ Y

The ~-otection problems faced by current generation operating
syster -. igners were more complex than those faced during the third
generacion because the process is a more complex entity than the
program. The process may consist of a number of programs., Whereas
the third generation progiam was static in size, the process is
dynamic ~- its memory and resource requirements varying as programs
ave moved in and out of the per process virtual enviromment.

The problem now is the incorporation of hardware and software
mechanisms to support multiprocessing safely. The problem has
aspects similar to those encountered in the third generation, yet
more comi’ ~x,

Mechanisms are needed to protect one user process from another.
The operating system must supply per process virtual environments
which, on the one hand, isolate processes as a matter of course yet
permit cooperatior or controlled sharing of information between or
among processes desired. This problem is one of providing
memory protectio .. inter-process communication features.

Mechanisms are needed to protect the operating system software
from user processes. Again this is largely a matter of memory pro-
tection, setting aside main memory areas for operating system
software and controlling access to it by user processes.

Lastly, the resources of the computer system must be protected
from user processes. Users should be able to make ugse of the

43

s

system's resources, but only in a manner controlled by the operating
system. As we saw in the third generation, this can be accomplished
by structuring the hardware operations of the system into privileged
and unprivileged operations, the former being used asolely by the
operating system to control and manage the system resources.

44

e

—a——

Current Generation
Protection Features

Virtual memory
Executiun domains
Hierarchical domains
Concentric rings

1:O access controls

\-

Here are the types of hardware mechanisms used to deal with the
protection problems of multiprocessing systems.

Virtual memory is both a memory management and memory protec-—
ticn feature, and we saw earlier the importance of a virtual memory

architecture to the support of multiprocessing and interactive
access by multiple users.

Execution domains, hierarchical execution domains, concentric
rings, and 1/0 access controls are some of the types of hardware

mechanisms employed to separate privileged and unprivileged opera-
tions.

45

v a——

e am——— e e ST R e ey o

Virtual Memory

—e % MAIN ME MORY
L.] VIRTUAL

/7

L

ADDRESS Y,

[moex | oveser |

. I,
3
PROCESS
MAPPING]
TABLE
RrW -
N
N

Here is a rather generalized description of virtual memory. It
is meant to characterize both true virtual memory systems, such as
MULTICS and VAX-11/780, and so-call~d mapped memory systems like the
PDP-11/45 and 11/70.

The virtual address space of a process consists of a collection
of either variable sized segments or fixed sized pages. This slide
depicts a paged virtual memory system. Descriptors for the pages of
a process are rollected together into a mapping table. Each
descriptor contains information defining both the location of the
page and the process' access permissions to the page. A flag within
the descriptor typically indicates whether the page is resident in
main memory. If the flag is set, the location information is the
starting location of the page in main memory; if reset, the starting
location of the page on auxiliary memory. In the slide, the second,
fourth, and fifth pages of the process' virtual address space are in
main memory.

Access permissions are read (R), write (W), execute (E), and
null (N). The process has read and write permission to the second
and fifth pages, and execute permission to the fourth page. Null
access means that no page is described by a particuiar descriptor;
it is used to indicate that a mapping table entry does not contain a
value descriptor — an unused page of the process' virtual address
space.,

46

s e o s

, Addresses generated by programs within the process are two-
component vitual addresses, The first component is an index used by
: the virtual memory hardware to locate within the mapping table a
: descriptor for the page to be referenced. The second component is
! an offset used to locate a specific byte or word within the object,
The virtual memory hardware first checks the access permission field
to verify that the attempted access is permitted to the process., If
it isn't, an access fault is generated by the hardware and the
cperating system is initiated to take appropriate action, If access
is permitted and the page is in main memory, the hardware adds the
offset to the starting location of the page to form the effective
physical address. If the page is not in main memory, a page fault
is generated by the hardware and the operating system is initiated
to move the page into main memory off of auxiliary memory.

Because the operating system creates and manages processes, it
is the responsibility of the operating system to create and manage
the process mapping tables. By doing so in a correct and judicious
manner, the operating system can effectively isolate processes where
) required and allow them to cooperate and share information where
desired. Descriptors are added to mapping tables as processes
request that pages be brought into their virtual memory. Whether or
not the operating system honors the request depends upcn the protec-
tion policy enforced by the operating system,

-
: “7
»

AF—— S e e s . ,7"“' s m__ S e e

Execution Domains
MAIN §
SUPERVISOR
MAPPING pysp) DOMAIN .
USER DOMAIN JABLE ABSOLUTE
—— ADDRESS
VIRTUAL ADDRESS — y-ij .
-m+m PRIVILEGED
— INSTRUCTIONS
UNPRIVILEGED
INSTRUCTIONS HALT
LOAD/STORE
4 MAP
110
L‘ SET DOMAIN 4‘)

We saw in the third generation how execution domain hardware
was used to partition operations inte privileged and unprivileged
ones. This slide shows how a two-domain hierarchy is implemented in
a virtual memory architecture. The only distinction is that user
software executing in user domain (with the processor in
unprivileged mode), is constrained to using virtual addresses which
are translated by the virtual memory hardware into physical main
memory addresses. The operating system, executing in supervisor
domain (with the processor in privileged mode), is privileged, if it
so wishes, to use absolute physical memory addresses (and, in some
systems, can thereby access any main memory location). All the

other characteristics of execution domains remain the same as they
were in the third generation.

48

e = - PRI ol R e N e I A

PP 2 S R e

o —

. e - -

e st et ks

Hierarchial Execution Domains
MAPPING TABLE MAIN MEMORY
KERNEL
(PRIV) KERNEL
MAPPL G TABLE KERNEL
SUPERVISOR SUPERVISOR
MAPPING TABLE USER
LUJSER — 7/

We have noted how current generation operating system designers
recognized that certain elements of the operating system were more
critical than others and required greater emphasis in design and
implementation in order to achieve overall reliasbility. Some
hardware designers realized that hardware support was needed to iso-
late and protect these more critical operating system components.

This slide illustrates the concept of hierarchical execution
domains, as providad by the PDP-11/45 and 11/70 computer systems.
There are three modes of processor operation -- kernel, supervisor,
and user -- and a mapping table for each mode of execution. A pro-
cess therefore consists of three separate address spaces, or three
domains of execution. At any point in time during process execu-
tion, the particular mode of processor operation determines which of
the three mapping tables is used to translate virtual addresses.

The kernel address space contains those critical operating sys-
tem components which manage the physical machine resources and
implement abstractions out of these resources. The supervisor
address space contains non-kernel operating system components which

provide the extended services. And the user address space contains
user software.

The three domains of execution are linearly ordered in terms of
privilege. When a process is executing in kernel domain, kernel
operating system software is executing and information in all three
address spaces is accessible to it. Also, auy privileged machine

49

instructions can only be executed in kernel domain, i.e., when the

processor is operating in kernel mode. When a process is executing
in supervisor domain, non-kernel operating system software is exe-
cuting and only the supervisor and user address spaces are accessi-
ble. And when a process is executing in user domain, user software
is executing and only the user address space is accessible. Trap

instructions are used by software in user domain to invoke software

in supervisor domain, and by software in supervisor domain to invoke
software in kernel domain.

With this hierarchical execution domaln mechanism, critical
kernel operating system software is protected from non-kernel and

user software, and non-kernel operating system software is protected
from user software.

50

by [T N

R

e e

Concentric Rings

MAPPING TABLE

Q)) | [

2 .

.
3

. y

Concentric ring hardware architectures are a generalization of
hierarchical execution domain architectures, The MULTICS 6180,
Honeywell SCOMP, and PRIME 400 and 500 are examples of concentric
ring architectures. This slide illustrates the general characteris-
tics of a ring architecture supporting a segmented virtual memory.

Conceptually, rings of execution are arranged concentrically,
with ring O innermost, most privileged, and most protected. Rings
1, 2, and 3 are peripheral to ring 0 and of decreasing privilege and
protection. Ring 0 is analogous to kernel domain in a hierarchical
domain architecture, ring 1 is analogous to supervisor domain, and
rings 2 and 3 are analogous to user domain. (Ring 2 can be thought
of as user domain 1, with greater privilege and protection than ring
3, or user domain 2.) A field within the PSW defines the current
ring of execution of the currently executing process,

Segments of the process virtual memory are assigned to particu-~
lar rings of execution just as segments may be assigned to particu-
lar domains in a hierarchical domain architecture. But unlike
hierarchical domain architectures, where a segment is assigned to a
particular domain by the placement of its descriptor into the map-
ping table associated with the domain, a segment is assigned to a
particular ring by the setting of certain values within ring bracket
fields of its descriptor. Furthermore, instead of defining the

address space of a process .ith a mapping table per domain, the
address space is defined by a single mapping table.

51

The value of ring brackets R1, R2, and R3 define the ring(s) of
execution from which a segment may be read, written, and executed.
In this example, R1 defines the write bracket. A process may write
a data segment providing it possesses a descriptor for it in which
the write permission bit (W) is set and the current ring of execu-
tiornn of the process is between 0 and the value in R1. Similarly,
the combination of R2 and the read permission bit (R) d=fines the
ring(s) of execution from which a data segment may be read. And, in
a somewhat different fashion, the combination of R1, R2, and R3, and
the execute permission bit (E) defines the ring(s) of execution from
which a code segment may be invoked and executed.

PA contains the physical memory address, either in main or aux-

iliary memory, of the start of the segment, and LEN contains infor-
mation defining the length of the segment.

On a concentric ring architecture, code and data segments of
the kernel components of the operating system would be assigned to
ring 0. Each user process would include in its mapping table seg-
ment descriptors for these kernel code and data segments, The R1,
R2, and R3 values for certain kernel code segments would be set such
that they could be called by code segments executing in higher rings
using a CALL machine instruction; the CALL instruction would set the
ring field in the PSW such that the kernel code segments executed in
ring 0. Other kernel code segments might have ring bracket values
such that they could only be called by other kernel code segments
executing in ring 0. The R1 and R2 values of descriptors for kernel '
data segments would be set such that they could only be accessed by
kernel code segments (i.e, R1 = 0 and R2 = 0); they would be inac~
cessible to code segments operating in higher rings.

To continue further, code and data segments for non-kernel com-
ponents of the operating system would be assigned to ring 1, and the
mapping table for each user process would include descriptors for
these segments., Again, some of these non-kernel segments would be)
made accessible to user code segments executing in rings 2 and 3,

others would be accessible only to code segments operating in ring -
1.

Finally, uxer code and data segments would be assigned to ring
2 or ring 3 depending upon the protection needs of the user,

Note that the access rights of the process tend to increase as
the process' ring of execution decreases., Code segments executing
in ring 0 — the kernel of the operating system -—- have access to
all segments of the address space, whereas code segments executing
in, say, ring 2 can only access segments assigned to rings 2 and 3.
Certain ring O and 1 segments may be accessible to these ring 2 code

L e ge————

52

i e -, AR o

2

segments, however, depending on the protection concerns of the
designers,

Any privileged machine instructions would be executable only by
ring 0 code segments,

53

I —

te TP

(1/0 Access Control
USER MAIN MEMORY
PROCESS
VIRTUAL
ADDRESS
INDEX | OFFSET I
R
Rw p—
PROCESS
MAPPING] E — 1/0 DEVICE REGISTERS
TABLE
Rw -
AW
N

\. _J

We have already discussed how most hardware designers have
defined I/0 operations to be ovrivileged machine instructionms,
thereby permitting only the operating system access to I/0 devices.
Here is a mechanism whereby specific 1/0 devices can be made acces-
sible to user programs and manipulated using unprivileged machine
instructions. It is a mechanism provided by the PDP-11/45 and 11/70
computer systems and is called memory mapped 1/0.

The idea is that the control, status, and data registers used
to manipulate an I/0 device are addressed just like memory loca-
tions. I/0 device registers are assigned bus addresses as are
memory locations. The status and data registers of a device can be
read using a load instruction; control and data registers can be
written using a store instruction.

The significance of this feature is that an I/0 device can be
included within the virtual address space of a process. A descrip-
tor defining the control, status, and data registers for the device
can be added to the process mapping tsble. In this slide, the sixth
page descriptor maps to the device registers of an 1/0 device. The
process has read and write access to the device registers and can
read and write the I/O device by loading and storing, say, the
first, second, and third words of the sixth page of its virtual
address space.

Note that without some additional control mechanism only pro-
grammed 1/0 devices (e.g., terminals) can be made accessible to user

54

procesges. It would be unwise to give a process access to a Direct
Memory Access (DMA) 1/0 device, or an 1/0 channel, because the pro-
cess might instruct the device to read or write memory areas not
belonging to the process. One mechanism which would permit user
processes to access DMA devices would be to have these devices
operate using virtual addresses when reading and writing memory.
Virtual addresses presented by the DMA device would be mapped into

physical memory addresses using the mapping table of the process
which "owned" the device.

55

=y

Current Generation
Protection Features

Passwords {or user authentic ation
File system acceas controls
Selt qroup athors

Adcess cantrul asts

Audit mechanismy

_ J

Let us now examine some of the types of protection features of
current generation operating systems,

One of the most common is the use of passwords for user authen-
tication. When a user attempts to logon to the system, he must
identify himself to the system and submit a password. The system
assures that the user is who he says he is by checking the password
against a list of valid users and their associated passwords, It is
important that the system authenticate the user in some fashion,
lest a malicious user masquerade as some other user and gain access
to information to which he 18 otherwise not entitled.

Most current generation operating systems support mechanisms to
control access to information in the file system. File system
access controls must accommodate both the protection and controlled
sharing of information., Systems such as TENEX and UNIX support file
system protection based on the notion of self, group, and others.
This means that the creator or owner of a file can specify what type
of file access (e.g., read, write, execute, delete) is allowed to
himself (the owner), to other users in the same group as the owner,
and to all other users of the system. A much more flexible file
protection mechanism is access control lists, as supported by MUL-
TICS, wherein the creator or owner of a file can specify that par-
ticular users can have certain access to the file. For example, the
owner may specify that Jones has read access, Smith has read and
write access, Brown has read access, and everyone else has no
access.

56

.

- bt Sl

Finally, most current generation systems maintain an audit log
, of significant events. For example, whenever a user logs on, the
o operating system makes an entry into the audit log recording the

{ user's identification and the date and time of logon. The system
3 can then read the audit log and display to the user information
| descr.bing when he last logged on. Should the user determine that
he didn't really logon previously, as the system says he did, he can
infer that someone knows his password. The system may also record
in the audit log information describing for each file: time of last
access, time of last modification, and by wham. The system should
make this information available to the owner of the file so that he
can be assured that the file is being used only as he wishes,

57

- s : R e LR ST O S : e e st o+ i o Aty = T
. ' R SV AP SRS Do ST s e g =

- -~ - &
- — - — —

N
L e e B

.

Current Generation Security

Operating systems still unreliable
Muliilevel use not possible

Traditional security techriques used
System high operation

Penods processing

\. J/

Weli, with all of these interesting hardware and software pro-
tection features, and the greater emphasis on operating system
design; you might conclude that current generation systems are by
and large reliable enough to permit their use for processing mul-
tilevel information. Unfortunately this is not the case. Current
systems are still too unreliable and the traditional security tech-
niques of system high operation and periods processing wmust be used
in order to process classified information. ‘

58

O T eesmige o LTS

Current Generation Penetrations

M 1TH SDC
TENEN LD
MUT HICS ESD MITRE

M1% Unnersite of Michigan

\. /

As evidence of the continuing lack of reliable access control
mechanisms, consider the following successful penetrations of
current generation systems.

A group consisting of representatives from IBM and System
Development Corporation was able to penetrate the IBM Virtual
Machine operating system, VM/370, which runs on the System/370.
VM/370 differs from conventional operating systems in that the
interface presented to the user is that described in the Principles
of Operation of System/370. VM/370 implements a number of virtual
System/370 machines; i.e., each user has the illusion of having a
stand-alone 370 consisting of a CPU, main memory, and I/0 devices.
VM/370 endeavors to isolate each virtual machine. By sharing vir-
tual devices, data sharing with VM/370 is analogous to the way in
which data is typically shared among real machines.

The basis of all penetrations perpetrated by IBM/SDC was the
complexity of the VM/370 Control Program (CP) in mapping virtual
machine I/0 onto real machine I1/0. Each virtusl machine user can
write a virtual machine channel program which the CP, for perfor-
mance reasons, would analyze for legality and then generate a real
1/0 channel program to accomplish the virtual machine 1/0. The
analysis was able to catch attempts at self-modifying virtual
machine channel programs, but the penetrators were able to introduce
"puns" in the real channel programs generated by CP. These puns
were based on the ability to chain I/0O commands on the real machine.
The penetrators were able to seize control of the real machine and

59

e ———— am———————— -

have their own code run in supervisor domain, They were thus able
to access files belonging to all VM/370 users, Also, they found
that the CP was unable to control excessive demands by a particular
virtual machine, and they were able to monopolize real machine
resources, denying service to other virtual machines,

The TENEX operating system was penetrated in several ways by a
group at Lawrence Livermore Laboratories. The most interesting
penetration path was dubbed the "Password Information Leak." It is
a very subtle and complet flaw and characterizes a very stubborn
problem common in probably every system: the release of sensitive
information through timing or other unrelated information channels.
In the case of TENEX, the channel is the users ability to determine
a page fault occurrence, i.e., a reference to a page in the user
process' virtual address space which is not resident in main memory.

TENEX processes can submit passwords for checking in several
flexible ways. For instance, the process can invoke a system call
to gain access to some directory in the file system. Directories
are password protected, so the process must know the password for
the desired directory. The process would include the password as a
parameter to the system call. The process is able to put the pass-

word in user space and submit a pointer to it as the system call
parameter,

TENEX would do character-at-a-time checking of the password and
the knowledgeable programmer could exploit this fact to guess pass-
words. The programmer would position the submitted password so that
it straddled a page boundary. For example, the first character
would reside in the last byte of a resident virtual page and the
remaining characters would reside in the leading bytes of the next
page, which the programmer would arrange to be non-resident. The
programmer would issue the system call and .sequently determine
whether the non-resident page was referenced by TENEX. If so, the
programmer knew that the first character of the password was correct

and he would rearrange the position of the password and issue the
call again to guess the next character,

Another flaw the LLL group found was that typescript files of
user sessiona were automatically assigned a protection mode of read
access to everyone., These files could contain very sensitive infor-
mation, like passwords.

A very extensive penetration analysis of the MULTICS system was
performed by people from the Air Force Electronic System Division
(ESD), with support from individuals at The MITRE Corporation. This
group was successful in finding an exploitable weakness in the MUL-

TICS hardware (the early Honeywell 645) and several weaknesses in
the MULTICS operating system.

60

© e Sameam asem NS

The hardware problem concerned the bypassing of access checking
of operand addresses of the "execute' instruction. The trick was to
issue an execute instruction which had to resolve a series of
indirect addresses through different segments before the ultimate
operand was fetched. The hardware failed to perform access checking
on the final address in the sequence. The penetrators were able to
read or write a segment without the hardware checking the access
permissions in the final segment descriptor.

A somewhat similar flaw was discovered in the parameter valida-
tion routines of the MULTICS operating system. The ring O valida-
tion routines performed insufficent validation of parameters svp-
plied by outer ring procedures on system calls to ring 0. The outer
ring procedure could fool the ring 0 validator by supplying a
pointer as a parameter which indirected through several segments
before the ultimate parameter was reached. The validator neglected

to perform access checking before retrieving or storing the ultimate
location.

These access checking flaws in the hardware and software could
be exploited in a number of ways. The malicious user could change
his user ID stored in his process data segment in ring O to be some-
body else and gain access to their files. Or the user could modify
ring 0 code and plant a trap door, or do just about anything else.
(Note: the flaw in the execute instruction has been remedied in the
new Honeywell 6180 hardware; also, the ring 0 parameter validator is
now done by the 6180 hardware -- correctly!)

Finally the Michigan Terminal System (MTS) was successfully
penetrated by a group of University of Michigan graduate students in
advanced operating system principles. MTS runs on an IBM System/370
plug-compatible Amdahl 470V/6 and was designed to be secure from
penetration by student users -- even if rhey had full access to all
system documentation and listings. In fact, the penetration project

was undertaken at the invitation and full cooperation of the Univer-
sity of Michigan Computer Center!

MTS is a general purpose operating system providing both batch
and interactive service. It supported over 25,000 user accounts and
over 250 terminal users per day.

The class used SDC's Flaw Hypothesis Methodology and was very
successful. The flaws they found and exploited are similar to those
already discussed for other systems. One flaw in the system's
parameter checking routine allowed the penetrators to trick the sys-
tem into storing arbitrary bit strings into system data bases. The

61

T T i g e, Y M D AR AERE ARETR5 —pr - e

Beind

S

o

penetrators could alter accounting data, assume the identity of
other users, and run their programs in privileged mode., The parame-
ter checking flaw was that the system could be made to alter, unwit-
tingly, pointer parameters after they had been checked for legality,
but before they were actually used during the system call,

The Michigan group also found it easy to cause system routines
to branch to user code without changing the processor mode back to
unprivileged.

Summary conclusions in their report occurately characterize the
general reliability problem., ™A large operating system frequently
depends on a number of control structures, each of which assumes
that the others function correctly. However, a flaw in one such
component may render the others useless. [The operating system
designer]... must distinguish security relevant control structures

from non-security relevant structures and concentrate on the
former "

62

A m TN meeseTAR AT TS

Summary

Proteq tion problems arose when resources were shared

Third generation operating s\ stems were not designed with
PFrolection av a primary, goal

Current gensation operating sustems
Have o od hardware support tor protes hom
Contranze protes ton mehansms

Hut sutter madeguate sattwane desigre and dev elopmient methodofogy

\- _/

Let us briefly summarize this examination of the evolution of
protection in operating systems.

We saw that the protection of information by the operating sys-
tem did not become of concern until the third computer generation
when resources were shared by a number of user programs concurrently
resident in main memory. By and large, however, third generation
operating systems were not designed with information protection as a
primary goal. Rather, the goals were efficient utilization of
resources and system throughput,

Current generation hardware and software designers were well
aware of the unreliable nature of third generation protection and
endeavored to make improvements. The hardware designers were suc-
cessful. Intuitively, one can see that the hardware protection
mechanisms provide adequate hardware support. The operating system
designers and implementors were less successful. Although they
clearly recognized the importance of concentrating on a better
structuring of the internal software design -- and some did indeed
centralize Lhose components which dealt with resource utilization,
the implementing of abstractions, and information protection -~ the
resulting softwure still tended to be large, complex, and bug prone.

In order to produce cperating systems with more reliable infor-
mation protection, better design and development methodolcgies are
needed. Now that the importance of structuring the internal design
of a system and of kernelizing components responsible for

63

[P 3

s

ik wdbntl

information access control is well accepted, what are needed now are
improved techuiques for unambiguously specifying the design, and for
constructing programs which can be shown to implement correctly the
design. This requirement can be satisfied by evolving software
design, development, and verification methodologies incorporating
formal specification languages, verifiable programming languages,
and verification techniques which strive to demonstrate via

mathematical proof the correspondence between program specification
and program code.

64

————

S rgpaeme. e

L

'
v
b g =

. ——

APPENDIX

This appendix includes lecture slides providing background

information on the multilevel computer security problem and the]
requirement for trusted computing systems.

R S o S e R

65

N ; S I AU BB 4 Tt e 17 R

Tl e i

;
1
i
{

COMPUTER SECURITY PROBLEM

The protection of information
as it is stored within or processed by

a computer system serving a community of users

This opening slide attempts to define the computer security
problem as it exists today. We state the overall problem rather
simply as: the protection of information as it is stored within or
processed by a camputer system serving a community of users.

Our emphasis is on systems designed to support a community of
users through the sharing of resources -- the central processor,
storage devices, communications lines, Concern about the ability of
computing systems to protect the information they store and process
became most acute with the advent, about a dozen years ago or so, of
interactive systems designed to support multiple users simultane-
ously. The Department of Defense naturally desired to employ such
systems for a variety of applications; many of these, however, had a
requirement for the concurrent processing of information classified
at multiple levels, and some potential applications had a require-
ment for supporting simultaneously users of multiple clearances,

Great concern arose, at that time, over whether the operating
systems of this new breed of computer system could effectively main-
tain the separation of multilevel information and, further, whether
they could prevent the malicious user from gairing access to infor-
mation to which he was not entitled. As many of you know, it was
quite evident these systems could not be trusted to enforce the
geparation of information, or deny the malicious user access to
classified information.

66

LT S
PRV O A

e

With that unfortunate realization began the long process of
research and development programs into the construction of operating
systems incorporsting information protection mechanisms to permit
the simultaneous storage and processing of multilevel information.

And this is what we are primarily here to examine: the provi-

sion of information protection mechanisms, and assurances of their
correct implementation, in modern operating systems,

67

i, T T ——

f
INTRODUCTION

SOLUTION : CENTRAL ISSUE IS ACCESS CONTRQL

- EFFECTIVELY CONTROLLING ACCESS TO
a) THE COMPUTER SYSTEM ITSELF '

b) INFORMATION CONTAINED WITHIN IT

One of the first groups to intensively examine the camputer
Security problem was the Defense Science Board's Task Force on Com-
puter Security, formed in 1967 to study and recommend hardware and
software safeguards that would satisfactorily protect classified
information in multi-access, resource-sharing camputer systems.

Essentially, the central issue in solving the problem, 8o the
Board concluded, is one of access controls -- effective, non-
circumventable access controls, Mechanisms must be adopted which

effectively control access to the camputer system itself, and to the
information contained within the system,

Adequate mechanisms had already existed to effectively control
access to the system. After all, classified information was being
stored and processed on camputer systems at that time — not mul-
tilevel information on multi-access systems, however -~ and tech-
niques did exist to control access to these systems.

It was the second aspect, that of effectively controlling
access to information contained within the system, by the users of

the syatem, for whioh effective mechanism did not exist ard for
which muoh work needed to be done.

68

SRR vt M A o o

&

it

]

4

Tk oers \:"*’* t "A : - . g

Tm g T Grasw s

INTRODUCTION

POLICY DICTATES ACCESS CONTROL RULES
DODD 5200.1R CHOSEN AS OUR STANDARD
MANDATORY PROTECTION POLICY

- INFORMATION HAS CLASSIFICATION

- USERS HAVE CLEARANCES

- CLEARANCE <= CLASSIFICATION

DISCRETIONARY PROTECTION POLICY

Some policy must form the basis ¢f the access control rules.
Department of Defense Directive 5200.1R, which outlines the policy
to be followed in the realm of people and paper documents, can be
naturally extended to the computer system domain.

The Directive establishes a mandatory protection policy to
govern the handling of classified documents, It states that all

information is assigned a classification which identifies the sensi-

tivity of the information by ascertaining the potential level of
damage to the interests of the United States were the information to
be divulged t5 an unfriendly foreign agent. There are three formal
levels of classification: Top Secret, Secret, and Confidential.
However, when the policy is extended to the computer system domain,

it is useful to consider Unclassified as a fourth level of classifi-
cation.

Information may also carry a Special-Access Category or Com-
partment, if that information is segregated and entrusted to a par-
ticular agency or organizational group for safeguarding. For exam-
ple, information pertaining to nuclear matters is entrusted to the
Atomic Energy Commission. Note that compartments create a further
structuring within classification levels,

The Directive also stipulates that all personnel are to be
assigned a clearance, which is the privilege granted to an

69

'ﬁ-nn-u-li.u..ll.llll-!!.!ggggg!rgagggjggﬁaﬁauﬁu;aaﬂ_mmm»m*w*rmuc_v

-

individual on the basis of & background investigation to access
classified information necessary to his work. There are three for-
mal national clearances: Top Secret, Secret, and Confidential.
Again, when extended to the realm of computer systems, it is useful
to include a fourth category, Uncleared.

The general access control rule is that in order to be granted
access to classified information, an individual's clearance must be
equal to or greater than the classification of the information,
where the clearances and classifications are linearly ordered Confi-
dential, Secret, Top Secret. Purther, if the information carries a

compartment, the individual must also be cleared to access informa-
tion of that compartment.

A clearance, however, is a necessary but not sufficient condi-
tion to have access to classified information. DODD 5200.1R also
establishes a discretionary protection (or need-to-kn>w) policy.
Need-to-know is an administrative action certifying that a given
individual requires access to specified classified information in
order to perform his assigned duties. The combination of a clear-
ance and a need-to~know constitutes the necessary and sufficient
conditions for granting access to classified information.

70

© Ay ——he ., vt -

. ae——

|

CLASSIFIED PROCESSING

DODD 5200,28 REGULATES PROCESSING OF CLASSIFIED
INFORMATION

- ESTABLISHES POLICY FOR PROTECTING CLASSIFIED
INFORMATION STORED AND PROCESSFED

~ OUTLINES MODES OF OPERATION

As many of you know, camputer systems are indeed used to store
and process classified information. The formal requirements on com- ;
puter systems that must process any form of classified information .
are set forth in Department of Defense Directive 5200,28, "Security
Requirements for Automatic Data Processing (ADP) Systems."

This directive establishes policy for protecting classified
information stored, processed, or used within an ADP system., It
provides for the application of administrative, physical, and per-
sonnel security measures required to protect ADP equipment,

material, and installations from inadvertant or deliberate comprom-
ise,

It states that security controls should prevent delibarate or
inadvertant access to classified material by unauthorized persons,

and unauthorized manipulation of the computer and its assoclated
peripheral devices,

It also establishes a policy outlining the modes of operation

' in which classified data may be processed.

7

!

v ey - e N B e T T
Y T L TN Sl s e e T T

CLASSIFIED PROCESSING

DOD $200.28-M IS ADP SECURITY MANUAL
OUTLINES CONTROLS

- PHYSICAL

- PERSONNEL

ELECTROMAGNETIC

COMSEC

OPERATING SYSTEM ACCESS CONTROLS
PROCEDURAL

DOD 5200.28-M, "Techniques and Procedures for Implementing,
Deactivating, Testing, and Evaluating Secure Resource-Sharing ADP
Systems," is also known as the ADP Security Menual. It expands upon
the pulicies and requirements of DODD 5200.28 and outlines specitioc
measures and controls to be established for campliance with the pol-
icy.

Sections in the manual include: physical, personnel, elec-

tromagnetic, communications, operating system, and procedural safe-
guards,

Physical security controls safeguard the computer system itself
and access to it. It is the first line of defense, 80 to speak,
The central computer installation and terminal locations should be
in areas of restricted vccess, Types of measures employed here ure
vaults, locked doors, armed guarda. The intent, of courase, is to
deny improperly cleasred individuals access to the acamputer itself
and to any of its terminals. Other issues relating to physical secu-
rity are:

fire, flood, earthquate safeguards
hardware maintenance

file backup

recovery plans

control of documentation

72

Py

- - ———

Personnel controls relate to establishing the trustworthiness
of individuals permitted access to the computer system, Naturally,
in the DOD environment personnel security relates to attaining
clearance levels for these individuals commensurate with the clas-
sification and special categories of the information to be pro-
cessed, It is very important to educate personnel as to their

responsibilities in handling classified information in the computing
domain,

Electromagnetic emanations are released during the transmission
of information over communications lines and during the operation of
computing equipment., It is possible to intercept and monitor these
waves and determine the information being transmitted or processed,
Generally, the field of strength of these emanations increases as
the voltage and current increases. Therefore high voltage devices
like CRTs and high current devices like core memories and elec-
tomechanical devices (card readers, printers) are of major concern,

Techniques exist for analyzing emanations released by devices and
for reducing these emanations.

Communications security addresses the passive monitoring of
electromagnetic emanations and the active wire tapping of informa-
tion during transmission. Communications security employs various
cryptographic techniques to combat these threats. Commercially-
available equipment exists for effectively and efficiently encrypt-
ing information transmitted over channels of small and large
bandwidth, .

Operating systems security relates to any security and protec-
tion mechanisms supported by the operating system or by any applica-
tion subsystem. Types of controls considered here are passwords to
support user authorization and access to files, the labelling of
output, and the logging of user operations.

Finally, procedural controls refer to the coordinated adminis-
tration of all of the above types of safeguards to satisfy the DODD
5200.28. Generally, a system security officer is assigned responsi-
bility for administering these safeguards. Responsibilities include
the registration of users, overseeing the mode of operation, estab-

lishing erasure and declassification procedures, reviewing audit log
information.

73

B R R R SR

L e e———

CLASSIFIED PROCESSING

UNILEVEL PROCESSING
~ IS NOT PART OF THE PROBLEM

- CAN BE HANDLED BY PROPER APPLICATION
OF THE VARIOUS CAFEGUARDS

~ DEDICATED SYSTEM

We distinguish between two types of classified processing:
unilevel and multilevel processing. Unilevel processing is where
the computer system stores and process information of a single clas-
sification level. The system is dedicated to processing at a sin-
gle, fixed security level. This type of processing is not part of
the problem; it is well understood and can be handled by the judi-

cious applicntion of the safeguards and procedures stipulated in DOD
5200.28-M.

4

R —

—— -

o— -

CLASSIFIED PROCESSING

MULTILEVEL PROCESSING
~ SYSTEM HIGH OPERATION

-~ PERIODS PROCESSING

Multilevel processing is a situation where processing of
several different levels of classification must be done on a single
computer system, The ADP Security Manual identifies two modes of
operation to support multilevel orocessing.

The first is system high operation. This is a mode of opera-
tion where all users are cleared for the highest level of data being
processed in the system, and all processing takes place at that
level. All jobs must be upgraded to the system high level.

An implication of system high operation is that an unclassified
Jjob run on such a system would have to have its nutput treated as
classified. This is unfavorable because it proliferates classified
information. Before the output of the unclassified job can be han-
dled again in an unclassified manner, it must go through a standard
declassification procedure. Further, because we cannot trust the
camputer to separate the data of a real classified job and an
upgraded classified job, we are not sure that the output of the
upgraded job is really unclassified. Tt must be thnroughly
reviewed,

This mode of operation is useful only if all 1sers3 can be
cleared to the system high level,

75

e e e e = i 4

The second accepted mode of multilevel operation is periods
processing, or color change operation. With this mode the computer
is dedicated for use at specific security levels for different

periods of time, For example, at SECRET in the morning and UNCLAS-
SIFIED in the afternoon,

When the aystem transists from one level to another, certain
procedures must be followed to change the level (color) of the sys-

tem from one level (color) to another. This is called a color
change.

Color change consists of three phases -- quiescence, change-
over, restgrt — and may take upwards of two hours fram peak pro-
cessing activity at one level to peak processing at the new level,
Changeover phase involves removing storage media, clearing all

memories and processors, removing ali printer ribbons, and loading a
fresh copy of the operating system.

The advantage of periods processing over system high operation
is that there is no proliferation of classified information. The
disadvantage is the time wasted during the color change procedure.

76

s e A

CLASSIFIED PROCESSING

TRUE MULTILEVEL PROCESSING

- CONCURRENT PROCESSING OF MULTILEVEL INFORMATION BY
USERS OF DIFFERING LEVELS OF CLEARANCE

~ COMPUTER ASSURES SEPARATION OF INFORMATION

REQUIRES TRUSTED OPERATING SYSTEM

- PROTECTION FEATURES IMPLEMENTING EFFECTIVE
INFORMATION ACCESS CONTROLS

-~ ASSURANCE OF COMPLETE AND CORRECT CPERATION

What we are striving to achieve, however, is true multilevel
classified processing, which we define to be the concurrent processing
of irformation of more than cne level of classification by users of
more than one level of classification. A prerequisite for support-
ing this mode of operation is a computer system which can be trusted

to maintain the separation of information classified at different
levels,

The system must maintain a clearance attribute for each user
and a classification attribute for all information contained within
the system; and, before a user (i,e., his program) may access any
piece of information, the system must examine the clearance of the
user and the classification of the information.

Trust means that the system is reliable enough not to acciden-

tally compromise information, and robust enough to thwart the inten-
tions of the malicious user,

True multilevel processing requires a trusted computing syster,
A trusted computing system is defined to be one supporting hardware
and software protection features implementing effective information
access controls. In addition, we must be assured of the complete
and correct operation of the information access controls,

77

B a1

